CHALMERS

UNIVERSITY OF TECHNOLOGY

ELEKTROBRÄNSLENS ROLL SOM DRIVMEDEL

FRAMTIDENS SJÖFART 15 MAJ, NORRBOTTENS HANDELSKAMMARE, LULEÅ SELMA BRYNOLF, MECHANICS AND MARITIME SCHENGES CHALMERS UNIVERSITY OF TECHNOLOGY

1)

2)

3)

4)

- Vessel size
 Hull Shape
 Linktusinkt
- Lightweight material
 Air lubrication
- 5) Hull coating
- 6) ...

- More efficient power & propulsion system (e.g. fuel cells, hybrid, fully electric)
 Waste heat recovery
 On board power demand (e.g. lighting)
 - demano 4) 4...

- Speed optimization
 Capacity
- 2) Capacity utilization
- 3) Voyage optimisation
 -

4)

Alternative nergy sources	AI	ternative energy carriers	a	Emissic bateme
Kites, sails/wings Solar panels onboard Shore power	1)	Low carbon fuels (e.g. bio-methanol, biogas, HVO, electrofuels)	1)	Onboard carbon capture
	2) 3) 4)	Hydrogen Electricity	۷)	

5) ...

WHAT FUTURE FUELS ARE AVAILABLE?

Near future	2030	2050	Beyond
Fossil fuels with increasing sha carbon fuels	are of low		
		Low carbon fuels	
		Er	nergy carriers without carbon or carbon capture onboard
Increased electrification			
Increase use of kites, sails, solar panels, etc			

LOW CARBON FUELS

- Biofuels
 - Bio-oils
 - Hydrotreated vegetable oil
 - Bio-methanol
 - Liquified biogas
 - Synthetic diesel
 - Exotic fuels/chemicals as drop in
- Electrofuels

PRODUCTION COST 2030

Parameters assumed for reactor, CF 80%.	r 2030, 50 MW			Insight: Many different approaches	among authors.
Interest rate	5%			Insight: When data is "harmonized"	between the fuel options
Economic lifetime	25 years			(low compared to low etc) the differ	ences between the fuel
Investment costs:	A/ 700 (400 000)				chees between the fuel
Alkaline electrolyzers e/kv	vv _{elec} 700 (400-900)			options are minor.	
Methane reactor €/kW _{fuel}	300 (50-500)	H2 (base <u>) </u> 🖌			
Methanol reactor €/kW _{fuel}	500 (300-600)	H2 (best <u>) X</u>	XXX /		
DME reactor €/kW _{fuel}	500 (300-700)	H2 (worst) 💦			
FT liquids reactor €/kW _{fuel}	700(400-1000)	Methane (base)			
Gasoline (via meoh) €/kW	V _{fuel} 900(700-1000)	Methane (best)			Insight. Costs for
Electrolyzer efficiency	66 (50-74) %	Methane (worst)			insight. Costs for
	30 €/tCO-	Methanol (base)		Electricity	electrolyser and
O&M	4%	Methanol (best)			electricity dominates
Water	1 €/m³	Methanol (worst)			cicculary dominates
		DME (base)		/ Fuel synthesis and	Note. Currently we se
		DME (base)		CO canture	a trend towards lowe
					investment cost of
		F I -liquids (base)		uncortaintios	electrolyzers (comes
				uncertainties	
Electr	ro-diesel:	F I-liquids (worst)		installation &	with an increased
hase	case=180	Gasoline (MTG) (base)		indiract costs	market), Some
base		Gasoline (MIG) (best)			
best c		Gasoline (MTG) (worst)			scenarios also point d
€/MV	Nh				a trend towards lowe
		0	100 200	300 400	alastrisity prises in
		Electrolyser	Des durations a sate		electricity prices in
			Production costs	s (€ ₂₀₁₅ /₩WN)	future (if increased
	atment alertalis	or	Malaatralvoor 🗖 Ma	ntor x : Electricity a Invotement fuel curthesi	variable electricity
	esiment electolys			aler Y Electricity N invetsment fuer synthesis	
	In tuel synthesis	\square CO ₂ capture \square O2 revenues	s 🔽 Heat revenues 🦉	Uther plant investment costs	production).

Insight: Costs for electrolyser and electricity dominates Note. Currently we see a trend towards lower investment cost of electrolyzers (comes with an increased market). Some scenarios also point out a trend towards lower electricity prices in future (if increased variable electricity production).

Assuming curent cost the production cost of electromethanol may lie in the order of 200 EUR/MWh (if running the facility more than 40% of the year).

30%

40%

Capacity factor

20%

10%

Production costs found in literature

Fossil fuels	40-140
Methane from anaerobic digestion	40-180
Methanol from gasification of lignocellulose	80-120
Ethanol from maize, sugarcane, wheat and waste	70-345
FAME from rapeseed, palm, waste oil	50-210
HVO from palm oil	134-185

Insight:. Future production of electrofuels have the potential to be cost-competitive to advanced biofuels.

Investment electolyser 🔐 Stack replacement 🔳 O&M electrolyser 📃 Water 🐼 Electricity Ň Invetsment fuel synthesis O&M fuel synthesis CO₂ capture O2 revenues V Heat revenues W Other plant investment costs

RESULTS ON AVAILABLE CO₂ SOURCES IN SWEDEN

How much fuel can be produced?

- 45 MtCO₂/yr (fossil+renewable)
- 30 MtCO₂/yr is recoverable from biogenic sources =>110 TWh/yr electro-methanol

Insight: The amount of recoverable non-fossil CO_2 is not a limiting factor for a large scale production of electrofuels, in Sweden. **Note.** The revised EU-directive on renewable fuels states that electrofuels is a "<u>renewable</u> liquid and gaseous transport fuels of non-biological origin" if the energy content is renewable (article 2.36). Electrofuels from fossil industrial CO_2 is defined as "recycled carbon fuels" (article 2.35) and not defined as renewable.

Ref: Hansson J, Hackl R, Taljegård M, Brynolf S and Grahn M (2017). The potential for electrofuels production in Sweden utilizing fossil and biogenic CO2 point sources. *Frontiers in Energy Research* 5:4. doi: 10.3389/fenrg.2017.00004 http://journal.frontiersin.org/article/10.3389/fenrg.2017.00004/full

ENERGY-ECONOMY MODEL GLOBAL ENERGY TRANSITION (GET)

Linearly programmed energy systems cost-minimizing model. Generates the fuel and technology mix that meets the demand (subject to the constraints) at lowest global energy system cost

Ref: Lehtveer M., Brynolf S., Grahn. M. (2019). What Future for Electrofuels in Transport? Analysis of Cost Competitiveness in Global Climate Mitigation." Environmental Science & Technology 53(3): 1690-1697.

COST-COMPETITIVENESS IN A GLOBAL ENERGY SYSTEMS CONTEXT

Source: Lehtveer M., Brynolf S., Grahn. M. "What future for electrofuels in transport? – analysis of cost-competitiveness in global climate mitigation". Accepted for publication in Journal Environmental Science and Technology. 2019.

ELECTROFUEL INSIGHTS

- > Costs for electrolyser and electricity are dominating posts of the total electrofuels production cost.
- Production cost depends on capacity factor. Below 40% result in much higher costs per produced MWh of fuel. (However, from a global energy system model perspective, electrolysers can be beneficial for the energy system even at low load factors (10–30%))
- > Production costs may lie in the order of 100-150 EUR/MWh in future.
- > Future production of electrofuels have the potential to be cost-competitive to advanced biofuels.
- The amount of recoverable non-fossil CO2 is not a limiting factor for large scale production of electrofuels, in Sweden.
- The cost-effectiveness of electrofuels, in a global climate mitigation context, will depend strongly on the amount of CO₂ that can be stored away from the atmosphere.

WHAT FUTURE FUELS ARE AVAILABLE?

Near future	2030	2050	Beyond
Fossil fuels with increasing sha carbon fuels	are of low		
		Low carbon fuels	
		Er	nergy carriers without carbon or carbon capture onboard
Increased electrification			
Increase use of kites, sails, solar panels, etc			

ZERO CARBON FUELS AND ABATEMENT TECHNOLOGIES

- Renewable electricity
- Hydrogen (from renewable electricity)
- Ammonia (from renewable hydrogen)
- Low carbon fuels with carbon capture

Source: N. Ash, T. Scarbrough, Sailing on solar: Could green ammonia decarbonise international shipping?, Environmental Defense Fund, London, 2019.

FIGURE 18

Map showing land area required for solar electricity to produce green ammonia for the international shipping fleet in 2050

Satellite image from [12]

GREEN REVOLUTION ON THE HIGH SEA

Presentation October, 2018

HyMethShip: on the way to zero-emission shipping

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768945

"Emission-free" Ship Propulsion HyMethShip

The Concept

LARGE ENGINES COMPETENCE CENTER © LEC GmbH HyMethShip • Presentation• 2018-10 • Slide 16

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768945

Goals and Objectives

• 97% reduction in GHG emissions

Emissions reduction

- $_{\odot}$ $\,$ Elimination of SO_x and PM emissions $\,$
- \circ Minimization of NO_x emissions

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 768945

HyMethShip

WHAT FUTURE FUELS ARE AVAILABLE?

Near future	2030	2050	Beyond
Fossil fuels with increasing sha carbon fuels	are of low		
		Low carbon fuels	
		Er	nergy carriers without carbon or carbon capture onboard
Increased electrification			
Increase use of kites, sails, solar panels, etc			

POSSIBLE PATHWAYS

Near future	2030	2050	Beyond	
Fossil methanol with increasing share of bio-methanol Bio-n		nethanol or electro-methanol	Bio-methanol or electro-methanol with carbon capture onboard	
LNG with increasing share of LBG		LBG or electro-methane	Hydrogen or ammonia	
HFO/Diesel with increasing blend of bio- oils/biodiesel Bio-oi		Bio-oil Is/biodiesel or electro-diesel	s/biodiesel or electro-diesel with arbon capture onboard	
Increased electrification				
Increase use of kites, sails, solar panels, etc				

THANK YOU FOR LISTENING!

Karin Andersson, Professor, Mechanics and Maritime Sciences, Chalmers karin.andersson@chalmers.se selma.brynolf@chalmers.se

Selma Brynolf, Researcher, Mechanics and Maritime Sciences, Chalmers

Julia Hansson, Researcher, Mechanics and Maritime Sciences, Chalmers & IVL julia.hansson@ivl.se

Sofia Poulikidou, Postdoc, Mechanics and Maritime Sciences, Chalmers & IVL sofiapo@chalmers.se

Elin Malmgren, PhD student, Mechanics and Maritime Sciences, Chalmers elin.Malmgren@chalmers.se

Our core research team, within the unit of Maritime Environmental Sciences (MES), department of Mechanics and Maritime Sciences (M2), Chalmers University of Technology, campus Lindholmen, Gothenburg

CHALMERS

UNIVERSITY OF TECHNOLOGY